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Background. Mass drug administration (MDA) is the cornerstone for the elimination of lymphatic filariasis (LF). The 
proportion of the population that is never treated (NT) is a crucial determinant of whether this goal is achieved within 
reasonable time frames.

Methods. Using 2 individual-based stochastic LF transmission models, we assess the maximum permissible level of NT for 
which the 1% microfilaremia (mf) prevalence threshold can be achieved (with 90% probability) within 10 years under different 
scenarios of annual MDA coverage, drug combination and transmission setting.

Results. For Anopheles-transmission settings, we find that treating 80% of the eligible population annually with ivermectin +  
albendazole (IA) can achieve the 1% mf prevalence threshold within 10 years of annual treatment when baseline mf prevalence 
is 10%, as long as NT <10%. Higher proportions of NT are acceptable when more efficacious treatment regimens are used. For 
Culex-transmission settings with a low (5%) baseline mf prevalence and diethylcarbamazine + albendazole (DA) or ivermectin +  
diethylcarbamazine + albendazole (IDA) treatment, elimination can be reached if treatment coverage among eligibles is 80% or 
higher. For 10% baseline mf prevalence, the target can be achieved when the annual coverage is 80% and NT ≤15%. Higher 
infection prevalence or levels of NT would make achieving the target more difficult.

Conclusions. The proportion of people never treated in MDA programmes for LF can strongly influence the achievement of 
elimination and the impact of NT is greater in high transmission areas. This study provides a starting point for further development 
of criteria for the evaluation of NT.
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Lymphatic filariasis (LF) is a mosquito-borne neglected tropical 
disease (NTD) caused by 3 parasites, namely, Wuchereria 
bancrofti, Brugia malayi, and Brugia timori [1]. LF can cause 
chronic morbidity, such as hydrocele or lymphedema which 
are associated with disability, pain, mental health problems, 
reduced productivity, and social stigmatisation [2–4]. In 2000, 

the World Health Organization (WHO) established the Global 
Program to Eliminate Lymphatic Filariasis (GPELF) with the tar
get of eliminating the disease as a public health problem (EPHP) 
[5]. The 2 key goals of the program are (i) interruption of trans
mission by using community-wide mass drug administration 
(MDA) for at least 5 years using a 2-drug combination (ivermec
tin + albendazole [IA] in onchocerciasis co-endemic areas in 
Africa, and diethylcarbamazine citrate + albendazole [DA] else
where), and (ii) to reduce the suffering of patients by managing 
morbidity and preventing disability. In areas where W. bancrofti 
is endemic and Anopheles and/or Culex are the principal vectors, 
the first goal is considered to be met when the level of infection is 
reduced to <1% microfilaremia (mf) prevalence in the population 
aged 5 years and above. The achievement of this goal is measured 
through a series of transmission assessment surveys (TAS) [6].

Great progress has been made toward the WHO target. By 
2019, more than 8.6 billion treatments had been successfully 
distributed resulting in a 74% reduction in the number of 
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individuals infected with LF [7]. WHO aims to validate elimi
nation as a public health problem in 81% of endemic countries 
by 2030 [1]. To accelerate progress towards this goal in areas 
lagging behind, the WHO has recommended to use a combina
tion of all three drugs, known as the triple drug (IDA) therapy 
in eligible settings [8, 9]. Due to the risk of adverse events, this 
combination is not recommended in those African countries 
with LF-onchocerciasis or LF-loiasis co-endemic areas [8, 9].

LF elimination programs have been successful in some, but 
not all areas. An important determinant of reaching the 1% 
mf prevalence threshold is the population coverage of MDA 
programmes, which needs to be sufficiently high and is recom
mended to be at least 65% of the total population [5]. However, 
in addition to population coverage, prospects of achieving 
<1% mf prevalence have been recognized to depend on pat
terns regarding who does/does not take treatment in MDA pro
grams [10]. Especially in settings with persistent transmission 
after many rounds of MDA, the question arises as to whether 
there are groups of individuals who are sustaining transmission 
due to repeatedly missing treatment [11, 12]. There are many 
reasons why someone may never take treatment, including 
intentional factors (ie, refusal, non-attendance, failure to ingest, 
fear of side-effects) and unintentional factors (ie, out of the 
village at the time of MDA, treatment not offered, not eligible 
for treatment) [13–16]. The term “never treated” (NT) has 
been proposed to capture all causes for never treatment, irrespec
tive of the reason or intentionality and refers to individuals who 
have never been treated across consecutive treatment rounds 
[11, 12]. Other terms related to people not being treated (eg, sys
tematic non-compliance, non-participation, non-attendance) 
may refer to specific causes for non-treatment and those terms 
are not used in this work.

The achievement of the WHO 2030 goals may be hampered 
if too many people remain never treated [10, 17–19]. Therefore, 
quantifying NT levels (and ultimately, understanding the 
reasons behind them so they can be minimised) is critically im
portant. The programmatic implications of a particular level of 
NT are currently unclear. In this work, we provide modelling 
insight into the impact of NT on the likelihood that LF pro
grammes achieve the 1% mf prevalence threshold in epidemio
logical settings where Anopheles or Culex mosquitoes are the 
main vectors.

METHODS

We use 2 well-established individual-based stochastic models, 
namely, TRANSFIL and LYMFASIM to simulate the impact 
of NT on the probability of reaching the <1% mf prevalence 
threshold. Both models capture the basic transmission process
es such as parasite lifecycle, vector density and biting rate and 
age-specific rates of exposures to vectors. They mimic the im
pact of MDA for multiple coverage and compliance levels. 

The difference between these models is in the implementation 
and parameterization methods. Details of the 2 transmission 
dynamics models and their parameterization have been pub
lished previously (see Supplementary Material) [17, 18, 20–28].

Models for Never Treatment Patterns in MDA

There are many approaches to modelling patterns regarding 
the proportion of the population never treated [10, 19]. In 
LYMFASIM, NT is the result of an input parameter for the 
proportion of people who will ultimately never be treated 
(dashed horizontal line in Figure 1) and the overall population 
coverage of MDA. Patterns in repeated (non-)treatment of 
eligible individuals are assumed to be the result of a mix of 
systematic and random factors, which is achieved by assigning 
simulated individuals a trait for their inclination to participate 
in MDA. This means that the proportion of eligible people 
that has never been treated at some time point is higher 
than expected under random treatment. However, the level 
of NT among eligibles is directly tied to the overall coverage 
level (such that for increasing MDA coverage there is a limit 
to the NT values that can be simulated). Therefore, in 
LYMFASIM, we simulate different levels of NT for a given 
MDA coverage by changing the parameter for the proportion 
of people who will never be treated.

In the version of TRANSFIL used here, patterns of repeated 
(non-)treatment are modelled based on Griffin et al [29] (as 
reformulated by Dyson et al [10]). The model contains a pa
rameter, ρ, which controls the correlation of individuals attend
ing treatment in different rounds. This parameter governs the 
relative contribution of random and systematic factors to the 
probability of an individual being treated across consecutive 
treatment rounds ( ρ = 0 corresponds to completely random 
and independent probability of attendance in each round; ρ = 1 
corresponds to completely systematic). For TRANSFIL, we 
simulate different levels of NT by varying the parameter ρ. In 
addition to the above, both models consider age-dependent el
igibility for treatment.

NT is dynamic over time as it depends on how many rounds 
have been administered (illustrated in Figure 1). In the current 
study, we define NT as the proportion of people who are never 
treated after 5 rounds of MDA among individuals who are el
igible (based on their age and health status) for treatment dur
ing each of those MDA rounds. We quantify NT after 5 rounds 
of MDA, as this is the time-point at which most LF programs 
evaluate infection prevalence and programme success, and cov
erage surveys are likely to be implemented. This definition ex
cludes individuals that were or became eligible for treatment 
during those MDA rounds. The proportion never treated will 
be higher in young children who were ineligible during all or 
some of the 5 MDA rounds.

Other than age-dependent eligibility for treatment, no age/ 
sex-specific variation in treatment probabilities (eg, related to 
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work and mobility or pregnancy status) is considered in the 
current study. We also assume that “drugs received” are “drugs 
swallowed” (eg, there is no coverage-compliance gap). Both 
models assume no association between treatment and exposure 
to infection.

Simulated Settings and Scenarios

In this analysis we consider 2 treatment-nave settings (ie, with
out previous history of control by MDA): the first one repre
senting Africa-like populations with Anopheles gambiae sensu 
lato (s.l.)-driven transmission and the second one representing 
India-like populations with Culex quinquefasciatus-driven 
transmission. The main difference in the models for these 2 set
tings is in assumptions around uptake of parasites by the mos
quito. In addition, for the Indian setting, the LYMFASIM 
model considers density-dependent parasite establishment as 
a result of L3-driven host immunity. For both settings we con
sider a range of baseline mf prevalence levels in those aged 5 
years and older (10%, 20%, and 30% in Africa; 5% and 10% 
in India) and different treatment regimens (IA, DA, or IDA 
in Africa, and DA, or IDA in India). Table 1 provides an over
view of treatment efficacy parameters and age criteria for treat
ment eligibility considered in the simulations. For all settings, 
we assume that no bed-nets are implemented. To generate 
the range of pre-control prevalences, we vary transmission pa
rameters and select simulations and associated parameter 

values that result in equilibrium prevalences close to the desired 
baseline mf prevalence (see Supplementary Material for 
details). The human population size is fixed at 1000.

The impact of NT will depend on its magnitude, as well as 
the overall population coverage per round and the baseline 
mf prevalence. Therefore, for an LF program with up to 20 
years of annual MDA, we investigated different scenarios 
with regard to: (1) MDA coverage among the eligible popula
tion (Table 1) of 65%, 80%, and 90%. Due to the different 
age-related eligibility criteria for the drug combinations that 
can typically be used in each setting, these coverage levels 
of eligible population correspond, respectively, to 55%–63%, 
68%–78%, and 76%–87% among total population for Africa-like 
or India-like settings. (2) Range of NT among eligible individuals 
varying from 0% to 35% measured after 5 years of MDA.

Calculation of the Probability of mf Prevalence ≤1%

For all settings, treatment strategies and levels of NT, we calcu
late the probability of reaching the 1% mf prevalence threshold 
as the percentage of 500 repeated simulations that achieve the 
target in the population aged 5 years and above. This percent
age is calculated at yearly intervals, just before the next treat
ment round. We compare the effect of different coverage and 
NT levels in terms of the number of annual MDA rounds re
quired to achieve the 1% mf prevalence threshold with 90% 
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Figure 1. Proportion of the all-time eligible population (y-axis) that has been treated in N MDA rounds (gray color) by the X-th round (x-axis) as predicted by the model for 
MDA participation implemented in LYMFASIM, assuming an annual coverage of 65% of the eligible population, and assuming that 5% will never participate in the long run 
(dashed horizontal line). The never treated proportion (black) is highest in the first round and declines with the number of treatment rounds, approaching the proportion that 
will never participate. The all-time eligible population is the subgroup of the population who were eligible for treatment during all X treatment rounds. Abbreviation: MDA, 
mass drug administration.

How Does the Proportion of Never Treatment Influence the Success of MDA Programs for the Elimination of LF? • CID 2024:78 (15 May) • S95

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciae021#supplementary-data


probability (Supplementary Figure 1) and identify those sce
narios that achieve this within 10 years of annual MDA.

RESULTS

In Figure 2, and Supplementary Tables 1‒4 we present the 
number of annual MDA rounds, as a range over both models, 
required to achieve the 1% mf prevalence threshold with 90% 
probability for different treatment regimens, MDA coverage, 
NT, and baseline endemicity levels in treatment-naïve settings. 
For each setting, we find that: (i) the higher the value of NT 
(going down the rows in each panel), the higher the number 
of MDA rounds required for the programme to achieve the tar
get; (ii) the higher the coverage, the fewer the number of rounds 
required to achieve the target (going across the columns in each 
panel); and (iii) the higher the baseline mf prevalence (going 
down the panels), the lower the value of NT tolerable by the 
programme to achieve the target.

Anopheles-Transmission Settings

In Africa-like Anopheles transmission settings with a baseline mf 
prevalence of 10% in those aged ≥ 5 years and IA treatment at 
80% coverage of the eligible population, it is likely that the 
1% mf prevalence threshold will be achieved within 10 years of 
annual treatment when NT <10%. For a baseline mf prevalence 
between 20% and 30%, this goal could be achieved within a sim
ilar timeframe, but only if NT ≤1% (Figure 2). This means that in 
areas with higher pre-control mf prevalence, a nearly perfect 
MDA coverage would need to be achieved to reach the target 
within 10 years of MDA treatment. For NT values greater than 
these levels (10% for a baseline mf prevalence of 10% and 1% 
for a baseline mf prevalence of 20%‒30%), 90% probability of 
<1% mf prevalence can only be reached within 10 years of 
MDA if treatment coverage is very high (eg, 90% of the eligible 
population; Figure 2) or if a more effective drug combination 
were used in areas not co-endemic with onchocerciasis or loiasis 
(eg, DA or IDA; Supplementary Tables 1 and 2).

Culex-Transmission Settings

For India-like settings (with Culex vector) with a baseline mf 
prevalence of 5% in those aged ≥5-years, and DA or IDA treat
ment at 80% coverage of eligibles, it is likely that the 1% mf 

prevalence threshold will be achieved within 10 years of treat
ment, regardless of the NT value (up to the value that are fea
sible to simulate) (Supplementary Table 3). If coverage level 
was decreased to 65% of the eligible population, it would be 
possible to reach <1% mf prevalence within 10 years of annual 
DA treatment if NT ≤20%. However, treatment with the triple 
drug (IDA) therapy could achieve this target within 10 years, if 
NT <25% (Supplementary Table 3).

In settings with higher mf baseline prevalence (10%), a 
coverage level of 80% of eligibles is projected to achieve the tar
get in 10–11 years if NT ≤15%, and this outcome applies for 
both DA and IDA treatment (Supplementary Tables 3 and 4). 
However, the program duration (number of years required to 
achieve <1% mf prevalence) is shortest when treating with 
IDA (Supplementary Table 3). Treating 90% of the eligible pop
ulation with DA or IDA can achieve the target within 7 years. 
By contrast, if coverage were 65%, annual DA treatment could 
achieve the target within 10 years if NT ≤10%, whilst the toler
able value of NT could increase to ≤15% if IDA were used 
(Supplementary Tables 3 and 4).

DISCUSSION

Our findings indicate that the level of NT above which the 1% 
mf prevalence threshold cannot be achieved depends on the 
baseline endemicity, the employed drug combination, and 
the MDA coverage levels. The MDA coverage needed to 
achieve <1% mf prevalence depends on transmission setting, 
baseline endemicity level, drug combination and the level of 
NT. In Africa, after five rounds of MDA, the proportion of 
NT among all-time eligible individuals should not exceed 
10% in low endemic settings or 1% in high-endemic settings. 
The use of more effective drug combinations (DA and IDA 
compared to IA) can bring these NT thresholds up to some ex
tent, although these cannot be used everywhere (eg, in areas 
co-endemic for onchocerciasis or loiasis). In India and other 
culicine transmission settings, after five rounds of annual 
MDA at 65% coverage, the proportion of NT should not exceed 
20% in low endemic areas. A higher coverage level leads to 
more optimistic outcomes, in which any NT level can be per
mitted to achieve <1% mf prevalence. For higher endemic ar
eas, we obtain similar NT thresholds as for the Africa-like 

Table 1. Treatment Efficacy Assumptions and Eligible Age Groups According to Drug Combination (Taken From [18])

Treatment Regimen
Proportion of Adult  
Worms Killed (%)

Duration of Adult Female  
Worm Sterilization (m)

Proportion of Microfilariae  
Killed (%) Age Group Treated

D + A 55 6 95 ≥2 years of age

I + D + A (optimistic)a 55 Permanent 100 ≥5 years of age

I + A 35 9 99 ≥5 years of age

Abbreviations: D + A, diethylcarbamazine + albendazole; I + D + A, ivermectin + diethylcarbamazine + albendazole; I + A, ivermectin + albendazole.  
aTriple-drug regimen, for which we adopted previously published optimistic treatment efficacy assumptions.
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Required number of annual MDA rounds to  reach the 
1% mf prevalence threshold 

Coverage
65% 80% 90%

Baseline mf prevalence NT
10% 0% 8-9 6-7 5-6

1% 8-9 6-7 5-6
5% 9-10 7-8 6-7

10% 10-12 8-11 7-8
15% 11-14 10-13
20% 13-16 12-15
25% 15-18
30% >20
35% >20

20% 0% 10-11 8-9 8
1% 10-11 9-10 8
5% 14-15 11-12 10-11

10% 16-17 15-16 12-14
15% 20 18-20
20% >20 >20
25% >20
30% >20
35% >20

30% 0% 11-14 9-10 9
1% 11-14 10-11 9
5% 15-18 14-15 13-14

10% >20 >20 18-19
15% >20 >20
20% >20 >20
25% >20
30% >20
35% >20

Figure 2. Africa-like settings with anopheline transmission, annual treatment with IA. The number of years, as a range over both models, required to achieve a 90% 
probability of reaching the 1% mf prevalence threshold interruption of transmission under annual treatment with IA. Coverage and NT levels are among the eligible pop
ulation. NT is the proportion of the all-time eligible population that has never been treated after 5 rounds of mass drug administration. Shaded areas = the 1% mf prevalence 
threshold achieved within 10 y (green), 10–20 y (orange), or >20 y (red); gray shaded areas = scenarios not possible to simulate. Abbreviations: IA, ivermectin + albendazole; 
MDA, mass drug administration; mf, microfilaremia; NT, never treated.

How Does the Proportion of Never Treatment Influence the Success of MDA Programs for the Elimination of LF? • CID 2024:78 (15 May) • S97



settings with anopheline transmission when using the same 
treatment regimen, coverage level and for a baseline mf preva
lence of 10%.

It should be noted that these outcomes are highly dependent 
on the assumptions that (i) NT occurs completely at random 
(not clustered in households or sub-communities) and (ii) 
NT is independent of exposure/infection status. In reality, the 
first assumption may not necessarily apply: never treated indi
viduals may be clustered geographically, leading to hotspots of 
ongoing transmission and a larger negative impact of never 
treatment on required treatment duration.

Regarding the second assumption, the potential (positive or 
negative) correlation between an individual risk of infection ac
quisition (eg, via exposure to mosquito bites) and the probabil
ity that an individual has never been treated can influence the 
impact of NT on achieving the TAS epidemiological thresholds. 
A positive correlation, where a higher bite-risk corresponds to a 
higher NT value, decreases the impact of MDA in achieving 
<1% mf prevalence and would make our results more pessimis
tic. This is particularly important in settings for which our 
models predict that the 1% mf prevalence threshold can be 
achieved with relatively low MDA coverage and high NT values 
(ie, in India settings, treating with DA at 65% coverage and 20% 
NT), which in case of positive correlation, would allow for rel
atively large reservoirs of infection in untreated people. A neg
ative correlation, where a higher bite-risk corresponds to a low 
NT, can increase the probability of elimination, and impact the 
time in achieving the 1% mf prevalence threshold.

Pragmatically, a coverage-NT combination may be acceptable 
when such a combination permits reaching the 1% mf preva
lence threshold, within 10 years of MDA, even though a lower 
value of NT could have led to achieving the target faster. For 
example, we can achieve the 1% mf prevalence threshold within 
8 years when the annual MDA coverage is 80% and NT is 20% 
(Supplementary Tables 3 and 4). However, we can achieve this 
target twice as fast when the annual MDA coverage is 80% and 
NT is 1%. In both scenarios, we use the same number of MDA 
tablets per round, but over the total program duration (to reach 
the 1% mf prevalence threshold) many more tablets are needed 
when NT is high. Therefore, in order to optimize/prioritize drug 
use, given limited resources, we need to minimize NT.

Our results can inform policy makers on optimal treatment 
strategies and show the importance of quantifying the level of 
NT in a community/implementation unit (and ultimately under
standing the reasons behind NT). However, in practice, it might 
be challenging to quantify NT levels, as it is difficult to identify 
individuals who have never been treated without implementing 
longitudinal surveys that record the treatment-related behaviour 
of each individual during any round of MDA. Although many 
LF studies have measured the level of NT [30–32], very few lon
gitudinal studies of never treatment have been conducted [33]. 
Furthermore, most of these studies have measured the level of 

NT retrospectively and not at each round of MDA, mostly due 
to financial and logistical constraints. In order to properly model 
the impact of NT, longitudinal cohort studies with information 
on who is treated (disaggregated by age, gender, occupation, ed
ucation) and when are essential.

It should be noted that there are other factors, not included 
in this analysis, which can influence the impact of NT on 
achieving elimination. One of these factors is age/gender- 
variation in coverage and NT, which depends on age-related 
patterns of exposure and contribution to transmission and 
can increase the number of years required to achieve elimina
tion. Here we have explored the impact of MDA as a standalone 
intervention upon achieving the 1% mf prevalence threshold 
for a range of NT values. Consideration of other interventions, 
such as the addition of vector control could alter the results pre
sented here by reducing the vector/human ratio (a component 
of the vector biting rate, which is a key determinant of the basic 
reproduction ratio ( R0) of the infection and hence, of baseline 
endemicity) and the vector biting rate more generally, helping 
to decrease the number of years required to achieve the 1% mf 
prevalence threshold [17]. A study by Rebollo et al, evaluating 
the elimination of transmission in absence of MDA in The 
Gambia, showed that elimination might have been achieved 
through the extensive use of insecticide treated nets for malaria 
control [34].

Health education is another important component that can 
prevent and control many neglected tropical diseases. Human 
movement (migration) can also play an important role, partic
ularly as elimination is approached, which can either reduce the 
probability of elimination by adding a source of infective mate
rial acting as an external reservoir or increase the probability of 
elimination by reducing the prevalence of infection in that area 
[35, 36]. This impact depends on human demographic and so
ciological factors of the area.
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